1. 啤酒中的二氧化碳是怎么加进去的
生产工艺流程:
充氧冷麦汁→发酵→前发酵→主发酵→后发酵→贮酒→鲜啤酒
↑
菌种
锥形罐发酵工艺
(1)锥形罐发酵的组合形式
锥形罐发酵生产工艺组合形式有以下几种:
①发酵-贮酒式 此种方式,两个罐要求不一样,耐压也不同,对于现代酿造来说,此方式意义不大。
②发酵-后处理式 即一个罐进行发酵,另一个罐为后熟处理。对发酵罐而言,将可发酵性成分一次完成,基本不保留可发酵性成分,发酵产生的CO2全部回收并贮存备用,然后转入后处理罐进行后熟处理。其过程为将发酵结束的发酵液经离心分离,去除酵母和冷凝固物,再经薄板换热器冷却到贮酒温度,进行1~2天的低温贮存后开始过滤。
③发酵-后调整式 即前一个发酵罐类似一罐法进行发酵、贮酒,完成可发酵性成分的发酵,回收CO2、回收酵母,进行CO2洗涤,经适当的低温贮存后,在后调整罐内对色泽、稳定性、CO2含量等指标进行调整,再经适当稳定后即可开始过滤操作。
(2)发酵主要工艺参数的确定
①发酵周期
由产品类型、质量要求、酵母性能、接种量、发酵温度、季节等确定,一般12~24天。通常,夏季普通啤酒发酵周期较短,优质啤酒发酵周期较长,淡季发酵周期适当延长。
②酵母接种量
一般根据酵母性能、代数、衰老情况、产品类型等决定。接种量大小由添加酵母后的酵母数确定。发酵开始时:10~20×10个/ml;发酵旺盛时:6~7×10个/ml;排酵母后:6~8×10个/ml;0℃左右贮酒时:1.5~3.5×10个/ml。
③发酵最高温度和双乙酰还原温度
啤酒旺盛发酵时的温度称为发酵最高温度,一般啤酒发酵可分为三种类型:低温发酵、中温发酵和高温发酵。低温发酵:旺盛发酵温度8℃左右;中温发酵:旺盛发酵温度10~12℃;高温发酵:旺盛发酵温度15~18℃。国内一般发酵温度为:9~12℃。双乙酰还原温度是指旺盛发酵结束后啤酒后熟阶段(主要是消除双乙酰)时的温度,一般双乙酰还原温度等于或高于发酵温度,这样既能保证啤酒质量又利于缩短发酵周期。发酵温度提高,发酵周期缩短,但代谢副产物量增加将影响啤酒风味且容易染菌;双乙酰还原温度增加,啤酒后熟时间缩短,但容易染菌又不利于酵母沉淀和啤酒澄清。温度低,发酵周期延长。
④罐压
根据产品类型、麦汁浓度、发酵温度和酵母菌种等的不同确定。一般发酵时最高罐压控制在0.07~0.08MPa。一般最高罐压为发酵最高温度值除以100(单位MPa)。采用带压发酵,可以抑制酵母的增殖,减少由于升温所造成的代谢副产物过多的现象,防止产生过量的高级醇、酯类,同时有利于双乙酰的还原,并可以保证酒中二氧化碳的含量。啤酒中CO2含量和罐压、温度的关系为:
CO2(%,m/m)=0.298+0.04p-0.008t
其中 p --罐压(压力表读数)(MPa)
t --啤酒品温(℃)
⑤满罐时间
从第一批麦汁进罐到最后一批麦汁进罐所需时间称为满罐时间。满罐时间长,酵母增殖量大,产生代谢副产物α-乙酰乳酸多,双乙酰峰值高,一般在12~24h,最好在20h以内。
⑥发酵度
可分为低发酵度、中发酵度、高发酵度和超高发酵度。对于淡色啤酒发酵度的划分为:低发酵度啤酒,其真正发酵度48%~56%;中发酵度啤酒,其真正发酵度59%~63%;高发酵度啤酒,其真正发酵度65%以上,超高发酵度啤酒(干啤酒)其真正发酵度在75%以上。目前国内比较流行发酵度较高的淡爽性啤酒。
锥形发酵罐工艺要求
①应有效的控制原料质量和糖化效果,每批次麦汁组成应均匀,如果各批麦汁组成相差太大,将会影响到酵母的繁殖与发酵。如10ºP麦汁成分要求为:浓度%(m/m)10±0.2,色度(EBC单位)5.0~8.0,pH5.4±0.2,α-氨基氮(mg/L)140~180。
②大罐的容量应与每次糖化的冷麦汁量以及每天的糖化次数相适应,要求在16h内装满一罐,最多不能超过24h,进罐冷麦汁对热凝固物要尽量去除,如能尽量分离冷凝固物则更好。
③冷麦汁的温度控制要考虑每次麦汁进罐的时间间隔和满罐的次数,如果间隔时间长次数多,可以考虑逐批提高麦汁的温度,也可以考虑前一、二批不加酵母,之后的几批将全量酵母按一定比例加入,添加比例由小到大,但应注意避免麦汁染菌。也有采用前几批麦汁添加酵母,最后一批麦汁不加酵母的办法。
④冷麦汁溶解氧的控制可以根据酵母添加量和酵母繁殖情况而定,一般要求每批冷麦汁应按要求充氧,混合冷麦汁溶解氧不低于8mg/L。
⑤控制发酵温度应保持相对稳定,避免忽高忽低。温度控制以采用自动控制为好。
⑥应尽量进行CO2回收,以便于进行CO2洗涤、补充酒中CO2和以CO2背压等。
⑦发酵罐最好采用不锈钢材料制作,以便于清洗和杀菌,当使用碳钢制作发酵罐时,应保持涂料层的均匀与牢固,不能出现表面凹凸不平的现象,使用过程中涂料不能脱落。发酵罐要装有高压喷洗装置,喷洗压力应控制在0.39~0.49MPa或更高。
2. 啤酒里面为什么加二氧化碳
因为啤酒里加二氧化碳会使啤酒喝起来有口感,一款好的啤酒应该是泡沫洁白细腻、挂杯持久、杀口力强、苦味厚重。 二氧化碳是空气中常见的化合物,碳与氧反应生成其化学式为CO2,一个二氧化碳分子由两个氧原子与一个碳原子通过共价键构成。 二氧化碳常温下是一种无色无味、不助燃、不可燃的气体,密度比空气大,略溶于水,与水反应生成碳酸。固态二氧化碳压缩后俗称为干冰。工业上可由碳酸钙强热下分解制取。 二氧化碳被认为是加剧温室效应的主要来源 。目前,其在大气中的含量约为400ppm,相比工业革命前的1750年增加了42% 在自然界中二氧化碳含量丰富,为大气组成的一部分。二氧化碳也包含在某些天然气或油田伴生气中以及碳酸盐形成的矿石中。大气里含二氧化碳为0.03~0.04%(体积比),总量约2.75×1012t,主要由含碳物质燃烧和动物的新陈代谢产生。
3. 啤酒里为什么加二氧化碳
啤酒:啤酒以大麦芽、酒花、水为主要原料,经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒,被称为“液体面包”,是一种低浓度酒精饮料。 啤酒的主要成分:
1.7种人类不能合成的氨基酸 2.平衡人类的肽和氨基酸 3.酒花素 4.多种维生素等成分 啤酒的化学成分:
1.总酚物质 简介:本类物质来源于麦芽和酒花,根据原料的不同,会在啤酒当中有不同的含量。
根据本类物质不同的结构与分子的大小,对啤酒的物理特性有着影响,比如:色度、口味、泡沫等等。过量的本类物质会于氧气一起造成啤酒中蛋白质沉淀和非理想口味。 检验原理:本类物质会于三价铁离子在碱性溶液下反应生成棕色的洛合铁。通过光度计在600nm下进行测量。
检验过程:-啤酒通过摇晃去除二氧化碳(麦汁或嫩啤酒通过离心机澄清)。 -10ml待测样品加入8mlCMC-EDTA溶液,在25ml容量瓶混合 -加入0.5ml三价铁离子溶液 -加入0.5ml氨溶液(3.5%) -加水至25ml线 -10分钟后在600nm下对盲样品通过光度计在1CM的厚度下测定吸收值。 -盲样品:10ml样品加入8mlCMC-EDTA溶液,在25ml容量瓶混合,加入0.5ml三价铁离子溶液,加入0.5ml氨溶液(3.5%),加水至25ml线 结果:总酚物质(mg/l)=820*测定值 正常值:150-200mg/
l 2.苦味值 简介:麦汁和啤酒当中的苦味物质是异构a酸。 检验原理:异构a酸被异辛烷(2,2,4-三甲基戊烷)在酸性环境下萃取出,并且在275nm时有最大的吸收值。
检验过程:-麦汁或嫩啤酒通过15分钟3000转/分钟离心澄清。(勿过滤) -啤酒通过摇晃除二氧化碳。 -10ml样品在20oC下恒温。(如果是麦汁,则5ml麦汁加5ml水),加到离心瓶里 -加入0.5ml6N盐酸,20ml异辛烷和三个玻璃球 -拧紧离心瓶的盖,15分钟、20oC下进行机械摇晃 -3分钟3000转/分钟离心分离 -在275nm下对异辛烷通过光度计测量吸收值 结果:BE=测定值*50(麦汁BE=测定值*100) 正常值:啤酒:10-40BE麦汁:20-60BE ----来源微博
4. 啤酒中的二氧化碳是怎么加进去的原理
啤酒里的气泡是在高压下溶于啤酒里的二氧化碳气体。平时啤酒瓶盖子紧紧盖住瓶口,使瓶内保持一定的压强,啤酒里的二氧化碳就不会冒出来。
一旦打开瓶盖,压强降低了,溶在啤酒里的二氧化碳气体就从啤酒里逸出来,变成大量的气泡上升。
啤酒溶液中含有碳酸,碳酸是由于他们把CO2加入了啤酒中,但是CO2在其中的溶解度比较小,在常压下只能溶解一点点,所以制造商就用高压把CO2压了进去,压强比较大。所以擦啤酒瓶口时就会往外冒。
5. 啤酒中的二氧化碳是怎么加进去的图片
1.你的问题是错误,不成立的,啤酒里没有任何成分能与二氧化碳发生反应。
2.虽然我们在饮用啤酒时,会出现很多二氧化碳,也就是我们看到的白沫,这是低分子蛋白质与二氧化碳的结合体,只是物理结合,不存在化学反应,就跟你用肥皂水吹泡泡的原理一样
3.啤酒里的二氧化碳是怎么来的呢,一个就是在发酵过程中,酵母菌生长所产生的,它大部分都溶解在酒体中,就是一摇晃酒瓶就会产生泡沫;第二个来源就是灌装中用二氧化碳来隔绝氧气,防止啤酒被氧气氧化,在啤酒瓶中空余的部分,二氧化碳的含量在99.9%以上
6. 啤酒里面加二氧化碳
啤酒加工角度来讲,啤酒绝不可能是勾兑出来的,因为啤酒中的各种物质,你是无法通过勾兑能实现的,除了啤酒中的二氧化碳、酒精、糖分能够模拟一下,其他的有效含量物质是无法实现勾兑的,多年前在北方的一个城市生活工作的时候,曾经有人幻想过通过啤酒酵母自溶的方法来实现啤酒的有效物质和风味物质的制备,然后再加上酒精和二氧化碳来够成啤酒,以彻底失败而告终。
7. 啤酒添加二氧化碳
气体在液体中的溶解度受外加压强的影响。
如果气体压强增大,溶解度就会增加。
所以要将二氧化碳气体通入啤酒,就必须增大二氧化碳气体压强,使它大于大气压,这样就可以通入啤酒了。
还必须将啤酒保存在密闭容器内,这样二氧化碳气体才不会散失。
8. 啤酒里的二氧化碳是怎么加进去的
空气中二氧化碳的含量大约占整个空气体积的0.03%。它们来自人和动物的呼出,来自煤和各种含碳化合物的燃烧以及动植物遗体的腐烂,火山爆发的时候大量二氧化碳从地下被喷入空气中。绿色植物在日光下进行光合作用的时候,从空气中吸去不少二氧化碳。江河海洋的水中亦溶解不少二氧化碳,20℃时1升水中可溶解0.9升二氧化碳。二氧化碳溶于水后形成碳酸:
CO2+H2OH2CO3
碳酸是一种很不稳定的化合物,它很快又分解成二氧化碳。这样,海洋、湖泊和河流就像二氧化碳的唧筒,不断地把它吸收和释放。
人们早已认识了二氧化碳。它从许多矿泉水中冒出来;从古老的酿酒的发酵液中冲出来;在深井和山洞里聚集着;在一些沼泽地带和湖泊周边散发着。在意大利维苏里火山周围的那不勒斯城附近有一个洞,叫做狗洞。当人领着狗走进狗洞时,狗很快倒下了,人却安然无恙。当人弯下腰去救自己的狗时,人也头晕了。这是因二氧化碳比空气重,沉积在地面上的缘故。
但是长期以来,人们不知道它是什么物质。因为它是无色、无味、无臭的气体,和空气中的其他组成气体混杂在一起。
17世纪比利时医生赫尔蒙特(J.B.Van Helmont,1579~1644)似乎知道了它和空气有所不同,在他死后的1644年出版的著述中,创造了gas(气体)一词。他在书中列出了各种气体:有风的气体,指空气;有毒的气体,指使蜡烛熄灭和聚集在狗洞里的气体;炭气体,指燃烧木炭和其他可燃物生成的气体;发酵产生的气体,指地窖中酿酒中产生的气体;硫气体,指硫磺燃烧产生的气体;野气体,指物质在容器受热分解或进行化学反应时产生的气体冲破容器,逃到空气中去的“不驯的”气体等。
直到1755年,英国医生布拉克(J.Black,1728~1799)发表焙烧碱性碳酸镁[MgCO3·Mg(OH)2]和石灰石(碳酸钙CaCO3)的实验报告,在焙烧过程中质量减轻了,产生一种气体,因为这种气体被固定在碱性碳酸镁和石灰石中,就称它为固定空气。他认识到清澈的石灰水[Ca(OH)2]能吸收固定空气,使石灰水浑浊,重又转变成石灰石。他并且发现固定空气和人们呼出的以及物质燃烧所产生的气体是同一种气体。
1767年英国外科医生麦克布赖德(D.Macbride,1726~1778)发表关于固定空气性质的论述,指出腐烂的动物体产生固定空气,并确定空气中存在固定空气,因为清澈的石灰水放置空气中会变浑浊。
拉瓦锡把纯净的炭放进氧气中燃烧后产生了固定空气,肯定了固定空气是碳和氧组成的。他试验了固定空气的水溶液显酸性,错误地称它为碳酸气。因为它不是碳酸的气态。
在确定了固定空气的化学式后,它被命名为二氧化碳。
二氧化碳虽然本身无毒,但会使人窒息致死。人们生活在含有0.03%(体积分数)二氧化碳的空气中是正常的。当空气中二氧化碳的含量达3%(体积分数)时,对人的不良影响明显起来,这时呼吸的次数增加了。这是因为随着血液中二氧化碳的增加对中枢神经系统起了刺激作用的缘故。在人们吸入含二氧化碳更浓的空气时,就会引起身体机能的严重混乱。当空气中二氧化碳的体积分数达10%时,就会使人丧失知觉,并使呼吸停止而死亡。
由于一定量的二氧化碳能引起中枢神经系统的刺激作用,因此医生们在治疗呼吸阻塞以及一些中毒症病人时,在供给病人呼吸的氧气中特地混入6%(体积分数)的二氧化碳。
二氧化碳在某些情况下也能维持和促进人们呼吸。当人们戴着防毒面具在工作或作战的时候,当人们在高空的飞机中或深水的潜水艇里的时候,虽然可以用贮存氧气的氧气瓶来供给氧气,但是携带它是沉重的,于是就要用二氧化碳本身含有的氧来提供呼吸了。这是利用过氧化钠(Na2O2)的作用,它是一种淡黄色的粉末或颗粒,是金属钠在燃烧后生成的。过氧化钠能吸收二氧化碳,并同时放出氧气:
2Na2O2+2CO22Na2CO3+O2↑
这样,戴上装有过氧化钠的口罩就会使自己呼出的二氧化碳转变成氧气供吸进了。
二氧化碳是一种化学性质不活泼的物质,它不会和燃着物或其附近的物质发生化学作用。它比空气重,会沉罩在火焰周围,把空气和燃烧物隔离开来,因此被用来灭火。我们现在的《化学》课本中展示了两种常用灭火器:
(1)泡沫灭火器。其内部结构是筒子里悬挂着一个小瓶,瓶里和瓶外分装着两种不同的溶液。使用时将灭火器倒转过来,两种溶液充分混合,进行化学反应,产生的二氧化碳把全部溶液挤压出来,能够喷射得很高、很远。
这两种不同溶液可以有多种不同的配合。例如有硫酸(H2SO4)和小苏打(碳酸氢钠NaHCO3)的溶液:
H2SO4+2NaHCO3ΔNa2SO4+2H2O+2CO2↑
有明矾[硫酸钾铝K2SO4·Al2(SO4)3·24H2O]和小苏打的溶液:
K2SO4·Al2(SO4)3+6NaHCO3=2Al(OH)3↓+3Na2SO4+K2SO4+6CO2↑
有盐酸(HCl)和碳酸钠(Na2CO3)的溶液:
2HCl+Na2CO3=2NaCl+H2O+CO2↑
为了使二氧化碳形成稳定的泡沫,常在溶液中添加起泡剂,如皂素等。
(2)干粉灭火器。其中的干粉主要是碳酸氢钠,它受热分解,放出二氧化碳:
2NaHCO3ΔNa2CO3+H2O+CO2↑
可以自制一个灭火器。在一个广口瓶里盛放大半瓶浓的碳酸氢钠溶液,另用一个小试管盛半管稀硫酸,小心把它放进瓶中,不要使两种溶液接触。在瓶口塞上带有尖嘴弯管的橡皮塞,就成了简单的灭火器。
碳酸氢钠就是我们家庭里发面做馒头时,为中和产生的酸所用的小苏打粉。蒸出来的馒头之所以松软可口,也是由于加热过程中产生大量二氧化碳的缘故。在自制灭火器中若没有硫酸,也可以用家庭里的醋代替试一试。
二氧化碳能够灭火,这也不是绝对的。把一镁条燃着,放进充满二氧化碳的烧杯中,燃烧着的镁条不仅没有熄灭,而且烧得更旺起来,只见冒出黑烟,在烧杯内壁出现黑色斑点。这是因为金属钾、镁等活泼金属和氧化合的能力比碳和氧化合的能力强,它们能夺取二氧化碳分子中的氧,把碳排挤出来,就冒出黑烟:
CO2+2Mg点燃2MgO+C
二氧化碳在我们生活中常常碰到,汽水里有它,啤酒里有它。这是把二氧化碳加压压进汽水和啤酒中的。它在工业中是生产纯碱(碳酸钠)、尿素、治感冒药阿司匹林等的原料。
二氧化碳在加压和降低温度时会变成无色透明的液体,甚至变成白色的固体。将温度降至31.1℃以下,压强加大到60.6×105Pa以上,二氧化碳就会变成液态,再降温,液态就变成固态了。
在美国的得克萨斯州,有一次几位地质勘探队员去勘探油矿。他们用钻探机往地下打孔,钻到很深很深的地方,突然喷出一大堆白色“雪花”。好奇的地质队员用手摸一摸,捏一捏,手指上立刻生出了水泡,甚至变黑。这个“雪花”就是固体二氧化碳。它在地层下受到强大的压强,喷出时压强突降,急剧吸热,使周围的温度下降,这样二氧化碳就由气态变成了固态。固态的二氧化碳通常在1.01×105Pa的压强下,在-78.5℃时升华,直接由固态变成气态,什么也没有留下,一点水也没有,所以把它叫做“干冰”。
把一块干冰紧紧握在手中并不感觉冷,是由于它升华产生的二氧化碳在干冰和手掌之间形成了一个隔离层,隔绝了热的传导。但是,如果用手捏一块干冰,将使皮肤冻伤,出现水泡或黑斑。
在实验室里,可仿照地下喷出“雪花”的情况制取干冰。在盛有液态二氧化碳钢筒的出口处系上一个纸圆筒,外面再套上一个布袋。打开活塞后,纸筒里就会充满雪花状的固态二氧化碳了。雪花状的固体再经压缩就成块状。
干冰可用于冷冻和保藏食品。它比普通的冰具有的优越性是明显的,温度可以降得更低,一点水也不会留下。
1945年,美国通用电气公司的一位青年技术人员谢弗(V.J.Schaefer)首先创造利用干冰人工降雨。用飞机把干冰从高空上撒出来后,空气里的水蒸气便凝结成微小的冰晶。微小的冰晶会聚集成较大的雪花,下沉后遇到地面热空气而熔化,落到地面就成为雨。1947年首先在干旱的澳大利亚地区试验成功,随后推广到世界各地。
干冰也可以用在开山筑路和采矿的爆破中。把干冰放在爆炸物的上面,它受到爆炸热的作用,瞬息变成大量的二氧化碳气体,扩大了爆炸的有效面积。
干冰不仅能保藏食品,呼风造雨,开采矿山,而且还是舞台和影幕上的置景“人员”。利用它能在很短的时间里布置出一幕白云的仙境,让“仙女”们从云层中走到人间。这是在隐蔽处放置一些干冰,浇上热水,或是送来一股蒸气。水蒸气迅速被冷凝,变成细小的水滴分散在气化了的二氧化碳中,就形成了雾,形似云。
空气中的二氧化碳让太阳的热辐射自由地射到地球上,但却强烈地阻止了地球的反射。这是因为被反射的阳光波长改变了,变成了红外线。这些红外线辐射不能透过二氧化碳气层。故此,空气中的二氧化碳对于地球来说,像是温室的玻璃罩,能形成温室效应。因此,二氧化碳对于地球起着保暖作用。有人计算,如果空气中的二氧化碳完全消失了,那么地球表面的温度将要比现在降低21℃;相反地,如果空气中二氧化碳的含量加倍后,平均温度要上升4℃。
于是,一些科学家们提出了这样的论说:从19世纪末到20世纪60年代,空气中的二氧化碳大约增加了1/10,其中一半左右是40年代以后增加的。目前,每年由工厂、汽车、飞机等排放的二氧化碳约120亿吨。因此工业愈发展,被烧掉的煤和汽油愈多,空气中二氧化碳的含量就愈大。这将使地球表面的温度愈来愈高。这样,几十年后,地球将要热到使覆盖南、北两极的冰层熔化,使海洋水位升高,造成世界性的洪水泛滥,使人类重新回到洪荒时代。另一些科学家们认为,空气中的二氧化碳每年确实在增加,但是气候一变暖,海水便会吸收大气的热量,使海水蒸发,于是云就增加。低空的云只要增加0.6%(质量分数),平均气温就要下降0.5℃。还有一些科学家说,空气中二氧化碳浓度的增加对农作物有利,生长较快,结的果实较多,从而使二氧化碳减少。众说纷纭,这引起了联合国专家们的注意。1989年11月在南美阿根廷首都布宜诺斯艾利斯召开的联合国第四次气候变化会议上,会议决议要求工业化国家在2008~2012年,将二氧化碳的排放量降到1990年的水平。
二氧化碳不仅大量而广泛地存在地球的大气、水中和地下,更存在于宇宙,特别是在金星的大气中。
金星是一颗最接近地球的、太阳系星的行星。每当夕阳西下、天色渐昏的时候,我们常常在西方的天空看到一颗光华夺目的明星,那就是它。或是在黎明的时刻,在东方看到一颗最后隐没在和煦阳光里的明星,也是它。因此,它又被叫做昏星、晨星、长庚星或启明星。
早在1761年5月26日,金星发生了凌日现象。金星恰好走到太阳和地球的中间,从地球上看,金星恰好通过太阳的圆面,当时俄罗斯科学家罗蒙诺索夫观察到这个现象,并把它记录了下来。他发现当金星经过太阳圆面,从一边走到另一边时,在接触到的地方出现一个气泡,他断定金星周围有很厚的一层空气。苏联飞船“金星”7号在金星上着陆后,测量了金星大气的成分,主要是二氧化碳,占93%~97%(体积分数),其次是氮气,占2%~3%(体积分数)。
美国宇宙飞船阿波罗15号用仪器探知,有二氧化碳从月球内部释出。