一、想知道"Pierre La Grange"这是什么牌子的葡萄酒?
它不是葡萄酒的牌子,它是一种葡萄的名字。
二、如何求拉格朗日对偶问题中的参数
任何优化问题的拉格朗日对偶函数,不管原问题的凸凹性,都是关于拉格朗日乘子的凹函数 为理解这个问题,首先有个结论:对于一凹函数族F:{f1,f2,f3...},取函数f在任意一点x的函数值为inf fi(x),即F中所有函数在这一点的值的下限,则f为凹函数。
三、求一元二次回归方程的参数?
已知数组为(x_1,y_1),(x_2,y_2),...,(x_n,y_n),
所求一元二次函数为 y=ax^2+bx+c。
其中a,b,c的求解方法可以使用Lagrange乘子法,相当于求解以下线性方程组:
a*sum(x_i^4)+b*sum(x_i^3)+c*sum(x_i^2)=sum(x_i^2y_i),
a*sum(x_i^3)+b*sum(x_i^2)+c*sum(x_i^1)=sum(x_iy_i),
a*sum(x_i^2)+b*sum(x_i^1)+c*n=sum(y_i),
其中n代表点的数目。
你求解方程组就可以了,显式公式不太好列,就省了。
四、一元三次回归方程怎样求其参数值
刚做了,不知道是否都是你问的,源程序如下#include#includeintmain(){floata,b,c,p,x1,x2;/*a,b,c为方程的系数,p用来存放b*b-4ac的值,x1,x2存放解*/scanf(%f%f%f,&a,&b,&c);if((a==0)&(b==0)){if(c==0)printf(x可为任意数,有无穷多个解\n);elseprintf(无解\n);}elseif(a==0&&b!=0){printf(方程的解为:%f\n,-c/b);}elseif(a!=0){p=b*b-4*a*c;if(p<0){printf(没有实数解\n);}else{x1=(-b+sqrt(fabs(p)))/(2*a);x2=(-b-sqrt(fabs(p)))/(2*a);printf(两个解为:x1=%8.4f\nx2=%8.4f\n,x1,x2);}}return0;}