返回首页

拉格朗日乘数法证明(拉格朗日乘数法证明幂平均值公式)

来源:www.homebrew.com.cn   时间:2023-01-04 14:22   点击:148  编辑:admin 手机版

1. 拉格朗日乘数法证明幂平均值公式

拉格朗日乘数原理(即拉格朗日乘数法)由用来解决有约束极值的一种方法。

有约束极值:举例说明,函数 z=x^2+y^2 的极小值在x=y=0处取得,且其值为零。如果加上约束条件 x+y-1=0,那么在要求z的极小值的问题就叫做有约束极值问题。

上述问题可以通过消元来解决,例如消去x,则变成

z=(y-1)^2+y^2

则容易求解。

但如果约束条件是(x+1)^2+(y-1)^2-5=0,此时消元将会很繁,则须用拉格朗日乘数法,过程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f对x的偏导=0

f对y的偏导=0

f对k的偏导=0

解上述三个方程,即可得到可让z取到极小值的x,y值。

拉格朗日乘数原理在工程中有广泛的应用,以上只简单地举一例,更复杂的情况(多元函数,多限制条件)可参阅高等数学教材。

2. 拉格朗日乘数法和拉格朗日中值定理

拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。

这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值

3. 拉格朗日乘数法推导

拉格朗日乘数法是多元微分学中用来求函数z=f(x,y)在满足g(x,y)=0条件下的极值问题的方法:通过设F(x,y)=f(x,y)+λg(x,y),其中λ称为拉格朗日乘数,并求F(x,y)的极值点求得条件极值的方法

4. 均值不等式拉格朗日乘数法

  在数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。

这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

5. 拉格朗日乘数法几何解释

构造函数4a+b+m(a^2+b^2+c^2-3)

对函数求偏导并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同时a^2+b^2+c^2=3

所以

m=根号17/2根号3

a=-4根号3/根号17

b=-根号3/根号17

4a+b=-根号51

1、是求极值的,不是求最值的

2、如果要求最值,要把极值点的函数值和不可导点的函数值还有端点函数值进行比较

3、书上说是可能的极值点,这个没错,比如f(x)=x^3,在x=0点导数确实为0,但是不是极值点,所以是可能的极值点,到底是不是要带入原函数再看

6. 拉格朗日中值定理证明对数平均不等式

辅助函数法:

已知 在 上连续,在开区间 内可导,

构造辅助函数

可得又因为 在 上连续,在开区间 内可导,

所以根据罗尔定理可得必有一点 使得

由此可得

变形得

定理证毕。

7. 拉格朗日数乘求最值

拉格朗日中值定理可以看成是中间有点的导数值等于连接起点终点直线的斜率,就是中间那一点的切线斜率等于连接那两点直线的斜率(就是平行了)

8. 用拉格朗日中值定理证明对数均值不等式

1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。

(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。

(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用分析法证明AB的逻辑关系为:BB1B1 B3 … BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。

4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法。

5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ,y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。

6.放缩法放缩法是要证明不等式A<B成立不容易,而借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法。放缩法证明不等式的理论依据主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩。

1、比较法(作差法)

在比较两个实数 和 的大小时,可借助 的符号来判断。步骤一般为:作差——变形——判断(正号、负号、零)。变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。

例1、已知: , ,求证: 。

证明: ,故得 。

2、分析法(逆推法)

从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。

例2、求证: 。

证明:要证 ,即证 ,即 , , , , ,由此逆推即得 。

3、综合法

证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。

例3、已知: , 同号,求证: 。

证明:因为 , 同号,所以 , ,则 ,即 。

4、作商法(作比法)

在证题时,一般在 , 均为正数时,借助 或 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1)。

例4、设 ,求证: 。

证明:因为 ,所以 , 。而 ,故 。

5、反证法

先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。

例5、已知 , 是大于1的整数,求证: 。

证明:假设 ,则 ,即 ,故 ,这与已知矛盾,所以 。

6、迭合法(降元法)

把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。

例6、已知: , ,求证: 。

证明:因为 , ,

所以 , 。

由柯西不等式

,所以原不等式获证。

7、放缩法(增减法、加强不等式法)

在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。

例7、求证: 。

证明:令 ,则

所以 。

8、数学归纳法

对于含有 的不等式,当 取第一个值时不等式成立,如果使不等式在 时成立的假设下,还能证明不等式在 时也成立,那么肯定这个不等式对 取第一个值以后的自然数都能成立。

例8、已知: , , ,求证: 。

证明:(1)当 时, ,不等式成立;

(2)若 时, 成立,则

= ,

即 成立。

根据(1)、(2), 对于大于1的自然数 都成立。

9、换元法

在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化。

例9、已知: ,求证: 。

证明:设 , ,则 ,

(因为 , ),

所以 。

9. 拉格朗日中值定理平均值公式

打开wps,选中要求和的结果,点击导航栏自动求和右边小箭头,找到平均值就可以求平均值了。

顶一下
(0)
0%
踩一下
(0)
0%
最新图文